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Derivation and methods of solution are given for the integrodifferential 
equations for heat transfer in an immobile bed of polydisperse materials 
with physicochemical transformations within the particles occurring in 
the kinetic-diffusion or kinetic-thermal regions. Examples are given of 
the method applied to mass-transfer processes. 

We consider the quasistationary approximation for heat transfer in a polydisperse 
bed consisting of spherical particles whose physical properties (density, diffusion 
coefficients, reaction coefficient, contents of reactants in the solid, etc.) are not 
dependent on the size. 

In such a bed of ideally mixed material, the size distribution can be represented 
by the differential distribution curve for particles of identical density: 

]~,max 
dq _ _ Z ( R )  ( j' X ( R )  d R =  1). (1) 
dR Rmin 

The response of a particle will be dependent on its size under otherwise equal 
conditions; on the other hand, even in the general case, the reaction in an arbitrary 
particle can be described by the following equation [i]: 

~z 0 V~ a~ gF~ (n~ - -  n e ~. (2) 
Or 

Here ,  as p r e v i o u s l y  [1] ,  we r e s t r i c t  c o n s i d e r a t i o n  to  h e t e r o g e n e o u s  i n t e r a c t i o n s  
in  which  t h e  r e a c t i o n  r a t e  p r o p e r  can be approx imated  a d e q u a t e l y  m e r e l y  by c o n s i d e r i n g  
the transport rate either for mass or for heat, i.e., we consider processes occurring 
in the kinetic-thermal or kinetic-diffusion regions. 

The equilibrium potential H e for these processes is constant during the reaction, 
while the total conductance is a function of particle size and degree of conversion,i.e., 

g :  g (% R). (3) 
An analog of ~e is, for example, the temperature of an evaporating surface in dry- 

ing, where the driving force of the evaporation may be taken as the temperature differ- 
ence, since Lykov's [2] and Filonenko's [3] models indicate that the drying rate in the 
period of decreasing rate can be expressed in terms of the drying rate in the first 
period. In a heterogeneous isothermal mass transfer for first-order reversible reac- 
tions, the driving force is the concentration difference c -- c e [4]. In the case of 
highly endothermic reactions, where the incoming heat is used up largely in the reac- 
tion, the temperature of the reacting solid phase remains virtually constant, and then 
the driving force may be taken as the difference t -- te, where t e is determined by the 
initial reaction rate under given conditions [5], and hence by the temperature of the 
reacting component. 
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If (3) is derived in some way, then (2) should be supplemented to describe the 
mass transfer in such a bed via a balance equation (mass conservation or energy con- 
servation, depending on the form of reaction) involving the gas flow and the reacting 
particles in an elementary volume. This equation can be given the form of (5) below 
since (I) and (2) indicate that the consumption of mass or energy from the gas flow per 
unit volume of the bed is 

W =  

miTiax 

[ [(1 - m) F,~ 
, VR 

Rmin 

g ( H ~ - - H e ) ~ ( R ) d R ,  (4) 

and can be given the following quasistationary approximation#: 

Of I~ 
--  W, (5) o-pco ax 

w h e r e  op = Cg i f  t h e  t e m p e r a t u r e  i s  t h e  t r a n s p o r t  p o t e n t i a l ,  w h i l e  dp = pg i f  t h e  c o n -  
c e n t r a t i o n  i s  t h e  same ;  we i n t r o d u c e  t h e  d i m e n s i o n l e s s  v a r i a b l e s  

/7~ -- ffe R 3ap(/7o -- f/e) "~ 
X, . . . .  , 8~-- -  - - ,  l q =  

//o --/Te R, [SZoR2, (6) 
3 (1 - -  m) apx ~= 

O'p(OR~ 

and then write (2) and (5) in the form 

emax 

at~ a• j- 
- -  • q~ (4 ,  s), - -  • v (e) q3 (4 ,  s) de, an a~ (7) 

emin 

where 

I g ~ "  v - -  R,%. ( 8 )  = e~ f ( 4 ' ~ ) ;  f -  ap ' 

Here f is the dimensionless analog of the impedance, while R, is expressed in some 
way in relation to the physical formulation of the problem. Often R, is conveniently 
defined as the weighted-mean radius of the particles 

R~ax 

R,:= i' 
emin (9) 

Equations (7) represent a system of two nonlinear integrodifferential equations 
for the unknowns ~(~, ~, s) and • n). 

In what follows we assume that ~ is bounded at ~ = 0 and i, together with its 
first derivative with respect to ~; then we expect that the reaction initially extends 
to the entire semiinfinite volume of the bed, and therefore the boundary conditions 
may be put in the following form [6]: 

• = I. 41n=0 = 0. (I0) 

The first (boundary) condition of (i0) gives from the first equation of (7) with 
= 0 the following relation representing the course of the reaction in particles of 

any size at the surface of the bed: 

#We neglect in a first approximation the variation in the filtration rate over the 
thickness of the bed with respect to normal conditions. 
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n : h ( ~ 0 ,  ~), ~0(q, ~)=*[~=0, (11_) 

where 

h(4, e ) : ~  d~ . 
r  e) 

0 

(12)  

Our initial assumptions about the properties of ~ mean that h is a monotonically 
increasing function of ~ defined in the range (0, I) o 

We now transfer to direct integration of (7), first rewriting the first equation 
in (7) as 

Oh 
- •  (13) 

0q 

As ~ is independent of e, it follows from (13) that 

a . h = O, (14) 
8~1 , e, 

where ~i  and r are  a r b i t r a r y  numbers i n  the range (r  r then the second ( i n i -  
t i a l )  c o n d i t i o n  i n  (10) and the d e f i n i t i o n  o f  h i n  (12) imp ly  t h a t  hi r = O, and t h e r e -  
f o r e  t h i s  q u a n t i t y  i s  no t  dependent on r i n  o t h e r  words,  @(~, n, r and m appear i n  h 
in such a way that 

h(~., e) = H, (15) 

w h e r e  H i s  d e p e n d e n t  o n l y  on ~ and n, b u t  n o t  on e.  We i n t r o d u c e  t h e  d e g r e e  o f  c o n v e r -  
s i o n  o f  t h e  b e d  m a t e r i a l  w e i g h t e d  w i t h  r e s p e c t  to  p a r t i c l e  s i z e :  

gmax 

T(~, ~1)= j" ~vde. 
emin 

(16) 

As (15) in essence defines ~(H, ~), (16) relates P to H, i.e., unambiguously de- 
fines H(~); we then multiply the first equation in (7) by ~(e) and then integrate with 
limits of Cmin and r we compare the result with the second equation of (7) and use 
(16) to get 

aT O• 
-----~- ~ : O.  ( 1 7 )  aq a~ 

On the other hand, (13) with (15) gives 

a H W )  _ • (18) 
an 

Equations (17) and (18) can be put as the following quasilinear system of differ- 
ential equations �9 

a__~ = • (T), a• . . . .  • (T), (19) 
a~fl a~ 

where 

~max 
d T  j '  

= - - =  v(e)~5(~, s)de. (20) F (T) dH 
~min 
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When (19) is to be solved, (i0) and (16) give the boundary conditions as 

• = I, Win=o = O. (21) 

Then the heat transfer in this po!ydisperse medium amounts essentially to a pre- 
viously considered problem [6] for heat transfer in a monodisperse bed, with the de- 
gree of conversion represented by the weighted mean of (16). The solution is [6] 

where 

(22) /~(%)=~, c(%, ,~)-~, •  
To 

~[fo ~Ifo 

H = o {' F(~)d~ ; G= j (" gF(~--~'dT . qfo = q/[~=0. (23) 

0 W 

It is sometimes more convenient to use a modified expression for the second quad- 
rature in (22) : 

G= j' dH 
H(~) 

(24) 

This expression is obtained if in (23) we replace the variable of integration in 
accordance with the differential equality d~ = FdH; as regards ~(~, ~, c), the degree 
of conversion, this can be found from (15). 

The resulting solution is automatically extended to a discrete particle-size dis- 
tribution; if, for instance, there are n types of particles in the bed, with the pro- 
portions of the fractions of size Ri (i = i, ..., n) equal to Xi, it is sufficient to 
assume that 

%(R) = 2 %i6(R-- Ri)' (25) 
i=I 

where 6(R) is a Dirac delta function [7]. Here, if we introduce the symbols 

e l -  R~, ~($ ,  n ) = ~ ( ~ , o , ~ ) ,  
R, 

hi (~i) = h (~;i, ~i), 

then (15) and (16) take the  form 

@, ()i) = q~(~i, e~), 
(26) 

n 

h~(~i ) =H,  ~ ' =  ~ Zi~?~. (27) 
f=l 

The general relationships of (22) are clearly unaltered in this case. 

We now consider examples illustrating the scope for using this method. 

i. Drying of a two-component bed of iron ore nodules of radii R~ and R= (R~ > R2) 
with contents of 50% for both types; the theoretical method of calculating nodule dry- 
ing [8] implies that the dimensionless analog of the total conductance for part of the 
first and second kinds is 

1 , i =  1,2, ( 2 8 )  
[~= 1 3 - - +  

Bi~ k~(b~)(1 --V3 

where ~i = 1 -- ui/uo. 
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where 

As R, we take the arithmetic-mean radius, and then (25) and (26) give 

I 
X1 = X2 - - "  ' E1 : 1 d- A, % : 1 -- A, (30) 

2. 

A -- R1--R2 (0 < A < 1). (31) 
RI~-R2 

The first group of relations in (27) is put in the following form on the basis of 

~ (I --'. A )  2 3(1 -7 A) 2 In(l --St) = H, 
�9 Bil kl ( b l )  

~2(I -- A )  2 3(i-- A) 2 In(1--J~) = H. 

Bi.o k2 (b2) 

(8), (12), and (26): 

(32) 

The following is the expression of (27) by virtue of (30): 

_ ~i+~ (33) 
2 

Equations (32) and (33) enable one to generate H(~) and H(4i) and thus to solve 
the problem completely for the drying of this bed; to check the theoretical relation- 
ships, we perform the following tests under the conditions R~ = 10.5 mm, R2 = 5.5 mm, 
XI = X2 = I12, Uo = 0.085 kg/kg, with a bed of thickness 250 mm, a heat-carrier gas 
temperature at the inlet of 250~ a flow speed of i.i m/sec, and a drying 
time of 3.5 min. The drying parameters of the nodules were such that the method 
of [8] gave Bi~ = 3.14, Bi= = 1.4, k~(bl) = 12.8, k2(b=) = 5.4, n = 1.88; then these 
were used with (22)-(24) and (28)-(33) to perform a Minsk-22 computation of P(6), 41(~), 
and 42(~). 

Figure 1 compares the calculated curves with experiment; the agreement is satis- 
factory. 

2. We consider heterogeneous mass transfer in a polydisperse bed with a uniform 
and continuous particle-size distribution (Fig. 2) subject to the condition that for 
particles of any size 

6 0  

/20 

rSO 

§ --a., f 
�9 - - b  

~ - ~  /I ! 

, '  

/+, 3 

/+' ] 
X 

f R  = l 3 

BiR " b,~(1--~) 

(34) 

and Nu ~ Re; the latter conditions means 
that the Biot criterion in (34) will be pro- 
portional to R. System (15) and (16) after 
integration and transformation can be put as 

~, _ Re r--I 
l i 

I i 

Fig. 2. Particle-size distribution in 
the second example. 

Fig. i. Distribution of 4 in two-com- 
ponent nodule bed at a given instant 
(curves from theory, points from ex- 
periment): i) 4 = 41 (points a); 2) 4 = 

(points b); 3) 4 = 42 (points c). x, 
mm. 
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Fig. 3. Curves for H(~I), H(~2), and H(~) for(a) second; 
(b) third examples: a. i) H(~I); 2) H(~2); 3) H(~ j); 
4) H(PM). b. i) H(@I); 2) H(~I)from (41); 3) H(~); 4) 
H(IM); 5) H(~2) (see text). 
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Fig. 4. 
for polydisperse particles in the examples: 
b) third. 

Mean degree of conversion ~(~, n) within bed 
a) second; 

~ 3 
Bi b ~ 

ln(1--~)--H, ~ -  
i+A 

2A 1 
[--• 

~d~, (35) 

where 

A = 
~max -- Rmfn 
Rmax -~ Rmin (36) 

As (35) enables one to reproduce H(~), this formulation terminates the detailed 
treatment of the problem; before we transfer to the purely numerical analysis, we con- 
sider the following example. 

3. Mass transfer in a two-component bed where the transfer in the particles of 
the first type occurs in the diffusion state, while that in the second type is in the 
kinetic state. Standard models for the reaction kinetics [i] give us, for particles 
of the first type, that 

l 
f~= __I__I @ I -- (I -- ~i)I/3 ' (37) 

BiR, (1 - -  ~ ) ~  

1 3 9 3  



and for particles of the second type 

. _  
1 0 8 )  

1 3 

Bi~ b~, (1 -- ~e) 

If now, as in the second example, we assume that Nu ~ Re, then Q27) after integra- 
tion and use of (8), QI2), and 07) and (38) is put as 

and 

32 (1 + A) = [1D1 - -  (1 --Ca) 2/a ] - -  (I + A) ( 1 • A --  

1--A ~ - - ~ l n ( 1 - - ~ ) : : H  
Bi b ~ 

2 

,) 
Bi ~1 ----H, 

(39) 

(40) 

where as before Bi and b are calculated for R = R, = ~/=(Ra + R2) and A is determined 
from (31). 

When we have determined H($) in accordance with (35) in the second example of (39) 
and (40) in the third, we can transfer to determining ~(~, N). As in the first case, 
we use (22), with G, as previously, given by (24). 

The calculation is carried through for the second problem for Bi = i, Ra/R2 = 2, 
and b = 1.5 and for the third for Bi = i, RI/R2 = I0, and b = ii (bR~ = 20, bR2 = 2). 
Figure 3 shows H(~), K(~I), and H(~2) for the second and third cases. The first rela- 
tion in (22) means that Fig. 3 represents the course of the mass transfer at the sur- 
face of the bed. Here we have to put that H = ~. The broken lines in the two curves 

T 3 -- l n ( 1 - - T )  (T=TM),  (41) 
Bi k(b) 

characterize the course of the reaction at the surface of a monodisperse bed with 
R = R,. In the first case k(b) = b 2 = 9/4, while in the second, where the reaction 
occurs in the intermediate region (b = ii), kQb) is derived from a special empirical 
interpretation of the available numerical solution [i] corresponding to the heat trans- 
fer in the body of the particles [k(b) = 24]. In the purely diffusion-reaction region, 
which is defined in the same way, k(b) is not dependent on b and equals 27.5; then the 
corresponding (41) is shown as the dot-dash curve in Fig. 3b and fairly closely repro- 
duces the curve for ~. 

Figure 3 shows that a small spread in particle size in the second problem (Fig. 
3a) means that replacing the polydisperse layer by an equivalent monodisperse one does 
not result in a large error, but this error increases as Bi decreases. If the particle- 
size spread is large (third case), this substitution results in a substantial distor- 
tion of the actual picture. 

Figure 4 shows Minsk-22 patterns for ~(~, n) for the second and third cases; it, 
together with Fig. 3, enables one to determine ~(~, ~) and ~2(~, n), while to deter- 
mine ~($, ~, e) in the second case we use the first equation in (35). 

NOTATION 

R is the current particle size; q is the weight proportion of fractions smaller 
than R; ~ is the stoichiometric reaction coefficient; Zo is the initial volume concen- 
tration of reactant in particle; VR and FR are the current volume and external surface 
of particle; T is the time; x is the distance of particle from surface; ~ is the de- 
gree of conversion averaged over current particle volume; g is the total mass-transfer 
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rate by reaction in current particle; ~o, ~x are the transport potentials; ap is the 
potential-conductivity factor for current particle volume; Opis the specific heat or 
density of gas; u is the current water content of nodules; uo is the initial water 
content; k(b) is the mass-transfer coefficient; R, is the scale dimension of particles; 
Bi is the Blot number; Nu is the Nusselt number; Re is the Reynolds number; b is the 
mass-transfer number. 
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